Причина движения воды в мировом океане. движение вод в мировом океане

Южное пассатное (Тихий океан), 40-185 км/сутки


Но самое крупное течение мирового океана – Юное пассатное. Мы уже сталкивались с ним пару раз, упоминая воды Атлантического и Индийского океана. Самое широкое и быстрое течение же находится в Тихом океане. Оно начинается у берегов Южной Америки и устремляется на запад, к Австралии и Новой Зеландии.

Часть вод уходит вниз, на восток, вливаясь в Экваториальное противотечение, часть стремится к берегам Новой Гвинеи, становясь частью Восточно-Австралийского течения, которое во многом определяет мягкий тропический климат тех территорий. Скорость воды может достигать 185 км в сутки, а ее температура – 32 градусов.

Анатомия волны

Периодическое колебание вод относительно положения равновесия называется волной.

У нее выделяют следующие элементы:

  • подошва – нижняя плоскость;
  • гребень (лип, от английского lip – губа);
  • фронт – линия гребня;
  • труба (tube/barrel) – участок, где гребень смыкается с подошвой;
  • стенка (wall) – наклонная часть, по которой скользит серфер;
  • плечо – участок, где стенка становится пологой;
  • пик – точка падения волны;
  • impactzone – место, куда обрушивается лип.

Из-за изменчивости волн измерять их чрезвычайно трудно. Оценивают колебания несколькими параметрами.

Высота – расстояние от подошвы до гребня. Измеряют ее по-разному. В сводках для серферов указывают перепад в колебании метеорологических буев. Иногда высоту волны указывают в «ростах».

Так как спортсмен скользит по волне, согнувшись, 1 «рост» равен приблизительно 1,5 метра.

Длина – расстояние между смежными гребнями.

Крутизна – отношение высоты к длине волны.

Период – время между двумя волнами в группе (сете).

Типы

Серфинг по каменистому дну с неровной поверхностью. Порто-Кову , западное побережье Португалии

Со временем развиваются три разных типа ветровых волн:

  • Капиллярные волны или рябь, в которых преобладают эффекты поверхностного натяжения.
  • Гравитационные волны

    Море, поднятые местами ветром.

    , в которых преобладают гравитационные и инерционные силы.

  • Волны , которые ушли от места, где они были подняты ветром, и в большей или меньшей степени рассеялись.

Волны появляются на гладкой воде, когда дует ветер, но быстро исчезнут, если ветер прекратится. Возвращающая сила, которая позволяет им распространяться, — это поверхностное натяжение . Морские волны представляют собой крупномасштабные, часто нерегулярные движения, возникающие при устойчивых ветрах. Эти волны, как правило, длятся намного дольше, даже после того, как ветер стих, а восстанавливающая сила, которая позволяет им распространяться, — это гравитация. По мере того, как волны распространяются от своей области происхождения, они естественным образом разделяются на группы с общим направлением и длиной волны. Наборы волн, сформированные таким образом, известны как зыби. Тихий океан является 19,800km от Индонезии до побережья Колумбии и, основываясь на средней длину волны 76.5m, будет иметь \ 258,824 набухает над этой шириной.

Отдельные « волны- убийцы» (также называемые «волнами-убийцами», «волнами-чудовищами», «волнами-убийцами» и «волнами короля») могут возникать намного выше, чем другие волны в состоянии моря . В случае волны Драупнера ее высота 25 м (82 фута) была в 2,2 раза больше высоты значительной волны . Такие волны отличаются от приливов и отливов , вызвано Луны и Солнца «s гравитационного притяжения , цунами , которые вызваны подводных землетрясений или оползней и волн , генерируемых подводных взрывов или падения метеоритов -Все , имеющие гораздо более длинные длины волн , чем ветровые волны.

Самые большие из когда-либо зарегистрированных ветровых волн — это не волны-убийцы, а стандартные волны в экстремальных морских условиях. Например, на RRS Discovery были зарегистрированы волны высотой 29,1 м (95 футов) в море со значительной высотой волны 18,5 м (61 фут), так что самая высокая волна была только в 1,6 раза больше высоты значительной волны. Самый большой зарегистрированный буй (по состоянию на 2011 год) был 32,3 м (106 футов) в высоту во время в от Тайваня.

Ответов меньше, чем вопросов

Прежде всего, оказалось, что существует сразу несколько видов подобных волн. Первый — классическая одиночная волна, которая неожиданно возникает даже в относительно спокойном море, наносит удар и столь же стремительно исчезает. Второй — три последовательных  гигантских волны (так называемые «три сестры»), средняя из которых обладает наибольшей высотой. Наконец, одиночные волны-монстры могут возникать и в течение 1–3 суток после завершения жестоких штормов. Кстати, не меньшую опасность представляют и «дыры в океане» — необычайно глубокие впадины между двумя волнами средней величины. 

Провалившись в подобную «дыру» носом или кормой, судно может зарыться в толщу воды и мгновенно затонуть, а оказавшись своими оконечностями одновременно на двух соседних гребнях — разломиться надвое. О глубине подобной «морской ямы» можно судить по случаю, произошедшему с английским легким крейсером Birmingham, который угодил в нее осенью 1944-го в Тихом океане: на верхнем мостике боевого корабля (18 метров над уровнем моря!) воды набралось по колено .

Итак, ученые вслед за моряками убедились в том, что волны-убийцы и провалы-убийцы действительно существуют. 

Их объединяющими признаками являются: значительные размеры от подошвы до гребня (15–35 метров), сильный гул в момент появления, высокая скорость перемещения (80–100 километров в час), а также малый срок жизни — от 20–40 секунд до 1–2 минут. Что же касается остальных их свойств, то здесь остаются вопросы, на которые специалисты пока так и не смогли дать однозначных ответов.

Спектр

Классификация спектра океанских волн по периоду волны

Океанские волны можно классифицировать на основе: возмущающей силы, которая их создает; степень, в которой возмущающая сила продолжает влиять на них после формирования; степень, до которой восстанавливающая сила ослабляет или сглаживает их; и их длина волны или период. Сейсмические морские волны имеют период около 20 минут и скорость 760 км / ч (470 миль в час). Ветровые волны (глубоководные волны) имеют период около 20 секунд.

Тип волны Типичная длина волны Возмущающая сила Восстанавливающая сила
Капиллярная волна <2 см Ветер Поверхностное натяжение
Ветровая волна 60–150 м (200–490 футов) Ветер над океаном Сила тяжести
Seiche Большой, изменчивый; функция размера бассейна Изменение атмосферного давления, штормовой нагон Сила тяжести
Сейсмическая морская волна (цунами) 200 км (120 миль) Разломы морского дна, извержение вулкана, оползень Сила тяжести
Прилив Половина окружности Земли Гравитационное притяжение, вращение Земли Сила тяжести

Скорость всех океанских волн зависит от силы тяжести, длины волны и глубины воды. Большинство характеристик океанских волн зависит от соотношения между их длиной волны и глубиной воды. Длина волны определяет размер орбит молекул воды внутри волны, но глубина воды определяет форму орбит. Пути молекул воды в ветровой волне являются круговыми только тогда, когда волна распространяется на большой глубине. Волна не может «чувствовать» дно, когда она движется в воде глубже половины своей длины волны, потому что слишком мало энергии волны содержится в маленьких кружочках ниже этой глубины. Волны, движущиеся в воде глубже половины своей длины волны, известны как глубоководные волны. С другой стороны, орбиты молекул воды в волнах, движущихся по мелководью, сглаживаются близостью дна морской поверхности. Волны в воде глубже 1/20 их исходной длины известны как волны на мелководье. Переходные волны проходят через воду глубже 1/20 их исходной длины волны, но меньше половины их исходной длины волны.

Как правило, чем длиннее длина волны, тем быстрее энергия волны перемещается по воде. Связь между длиной волны, периодом и скоростью любой волны:

Cзнак равноLТ{\ displaystyle C = {L} / {T}}

где C — скорость (скорость), L — длина волны, а T — время или период (в секундах). Таким образом, скорость волны определяется функциональной зависимостью длины волны от периода ( дисперсионное соотношение ).
L(Т){\ Displaystyle L (T)}

Скорость глубоководной волны также можно приблизительно определить следующим образом:

Cзнак равнограммL2π{\ displaystyle C = {\ sqrt {{gL} / {2 \ pi}}}}

где g — ускорение свободного падения, 9,8 метра (32 фута) в секунду в квадрате. Поскольку g и π (3.14) — константы, уравнение можно свести к следующему:

Cзнак равно1,251L{\ displaystyle C = 1,251 {\ sqrt {L}}}

когда C измеряется в метрах в секунду, а L — в метрах

Обратите внимание, что в обеих формулах скорость волны пропорциональна квадратному корню из длины волны.. Скорость волн на мелководье описывается другим уравнением, которое можно записать как:

Скорость волн на мелководье описывается другим уравнением, которое можно записать как:

Cзнак равнограммdзнак равно3.1d{\ displaystyle C = {\ sqrt {gd}} = 3,1 {\ sqrt {d}}}

где C — скорость (в метрах в секунду), g — ускорение свободного падения, а d — глубина воды (в метрах). Период волны остается неизменным независимо от глубины воды, через которую она движется. Однако по мере того, как глубоководные волны входят на мелководье и ощущают дно, их скорость уменьшается, а гребни «сгущаются», поэтому длина волны укорачивается.

Свойства вод Мирового океана

Океан справедливо принято считать главнейшим аккумулятором тепла на Земле. Его средняя температура равна 17 градусам тепла по Цельсию.

Вся толща воды нагревается Солнцем намного медленнее поверхности суши и очень неравномерно. Сперва тепло накапливается в верхних слоях воды, и лишь затем намного более медленно проникает к самому дну. Многие испробовали это на себе. Так, плавая жарким летним днём в водоёме – озере, реке или даже море (особенно в море) – легко ощутить разницу в температуре у поверхности и у дна. И если наверху вода может оказаться очень тёплой, то ноги вполне могут занеметь от холода. Это объясняется тем, что вода и большинство водных растворов солей крайне плохо проводят тепло. Данное общее свойство работает и для вод Мирового океана, которые, как отмечалось выше, представляют собой раствор многих солей.

Таким образом, поскольку тепло отдаётся водой довольно медленно, то обогрев той части планеты, которая находится вне досягаемости солнечных лучей (иными словами, как раз та, где в некоторый момент времени ночь), происходит именно за счёт накопленного океаном тепла.

Ещё одним интересным свойством является температура замерзания океанских вод. Всем давно известен и привычен тот факт, что вода в нормальных условиях замерзает при 0 градусов по Цельсию. Но для морской воды это несколько иначе. Дело в том, что тем больше вещества присутствует в растворе и чем меньше в нём доля растворителя, тем сильнее понижается температура замерзания субстанции. Что это значит? Океаническая вода замерзает при более низкой температуре, которая в среднем составляет приблизительно 4 градуса мороза по Цельсию.

На количестве растворённой соли (то есть, на солёности – о ней речь пойдёт немного ниже) базируется ещё одно свойство вод Мирового океана. Показатели плотности и солёности вод прямо пропорциональны друг другу: чем выше концентрация соли, тем выше плотность раствора, то есть, как было условлено раньше, воды. Таким образом, плотность разнится от региона к региону.

Общеизвестно, что в северных широтах на поверхности океанов могут образовываться айсберги. Их плотность намного меньше, чем плотность воды, и именно поэтому они как бы дрейфуют по ней.

Причины и особенности формирования волн

Вопреки наивным представлениям, морская или океанская волна образуется не от прибрежных ветров. Самые распространенные волны формируются далеко в океане.

Ветер, долго дующий в одном направлении, раскачивает громадные массы воды, иногда величиной с многоэтажный дом. Большие ветры формируются в зоне крайне низкого давления, характерного для антициклона.

При умеренном ветре на поверхности океана появляются крутые короткие волны — «барашки».

На стадии зарождения двумерные волны, высота которых не превышает длины, бегут параллельными вытянутыми рядами гребней. При усилении ветра гребни исчезают, быстрее растет длина волны.

Когда скорости волны и ветра уравниваются, рост гребней прекращается. С этого момента растет скорость, длина и период волн, а их высота и крутизна уменьшаются. Такие длинные волны больше подходят для серфинга.

При нарастающем шторме более молодые волны накладываются на старые, волнение моря кажется беспорядочным. Когда оно достигает пика, волны становятся максимально длинными, с протяженными фронтами. При этом длина гребней может увеличиться до сотен метров (рекорд – до 1 км).

Волны, у которых величина гребня превышает длину волны в несколько раз, называются трехмерными. Чаще всего трехмерные волны состоят из чередующихся «холмов», «бугров» и «впадин». Волны приходят сетами (группами) по 2–10. Чаще всего, по 3. Обычно средняя волна — самая высокая и правильная в сете.

Какими волнами изобилует Пенише →

Чем грозит рост уровня моря

Главная проблема повышения уровня Мирового океана — затопление прибрежных районов. Последствия изменения климата и роста уровня воды первыми почувствуют на себе малые островные государства и территории в Тихом и Индийском океанах, например, Кирибати, Маршалловы острова или Гавайи. Они могут вовсе исчезнуть с лица Земли. Дополнительный нагрев моря затрудняет размножение рыбы, что негативно повлияет на морской промысел, который является одним из главных источников дохода для жителей этих регионов.

Зеленая экономика

Прощай, Бордо: десять неприятных последствий глобального потепления

Чуть более теплый океан вызывает больше сильных ураганов, тайфунов и штормов, что разрушительно сказывается на прибрежных городах. Восемь из десяти крупнейших мегаполисов мира, где проживают сотни миллионов человек, располагаются недалеко от побережья. Исследования показывают, что в период с 1963 по 2012 годы почти половина всех смертей от ураганов в Атлантике случилась из-за штормовых нагонов, вызванных потеплением океана.

Рост уровня воды угрожает инфраструктуре городов, промышленности, грозит загрязнением питьевых источников и т.п. От соленой морской воды пострадают не только источники пресной воды, но и сельское хозяйство в целом, что вызовет массовый голод. Можно ожидать глобальную миграцию и климатических беженцев.

Зеленая экономика

Великое переселение будущего: кто такие климатические мигранты

К 2100 году повышение уровня моря на один метр при нулевом росте населения затронет 410 млн. человек по всем миру. По прогнозам Всемирного банка, к 2050 году ущерб мировой экономике только от наводнений составит до $52 млрд в год. Эта цифра может вырасти до $1 трлн в год, если к наводнениям прибавить ущерб от непосредственного повышения уровня океана.

Более теплая вода в океанах повышает их кислотность и снижает уровень кислорода, что негативно сказывается на биоразнообразии и экосистемах в целом. Если глобальная температура увеличится на 2 °C в сравнении с доиндустриальной эпохой, то коралловые рифы исчезнут почти полностью.

Вся королевская рать

Первый международный семинар по проблемам гигантских блуждающих волн состоялся во французском Бресте в 2000 году и с тех пор проводится ежегодно. В декабре того же года в Евросоюзе стартовал специальный проект MaxWave, который предусматривает настоящую охоту за волнами-убийцами с участием научно-исследовательских судов, автономных дрейфующих радиобуев, а также спутниковых систем наблюдения и телеметрии. Уже за первые три недели эксперты MaxWave совместно со специалистами Европейского космического агентства ESA обнаружили в различных районах Мирового океана более десятка волн высотой свыше 25 метров. При этом британским океанографическим судном Discovery невдалеке от побережья Шотландии была зафиксирована волна в 95,5 футов (29,1 метра), а так же сразу несколько 18,5-метровых. 

В 2012 году исследователям Австралийского Национального университета удалось смоделировать образование волны-убийцы в лабораторных условиях. 

Созданная в опытовом бассейне «гигантская» волна перевернула и потопила масштабную модель крупного грузового судна. А в октябре 2017-го в Оксфорде удалось в миниатюре воссоздать волну, которую зафиксировали приборы платформы Draupner.

Непрерывно расширяется и сеть стационарных пунктов наблюдения за районами возможного образования гигантских волн, которые оборудуются самой современной аппаратурой. Так, в декабре 2017-го на одной из буровых платформ компании ConocoPhillips в центральной части Северного моря начал работу специальный измерительный комплекс Ekofisk. Установленные на нем приборы позволяют ученым не только с высокой точностью (±10 см) измерять высоту волны, но и получать ее 3D-изображение в режиме реального времени.

Любопытно, что чем масштабнее становятся исследования (и, соответственно, возрастают суммы вложенных в них денег), тем больше жертв приписывают волнам-убийцам, само существование которых сравнительно недавно ставилось под вопрос. 

По мнению специалистов ESA, именно бродячие волны стали причинами гибели почти 200 крупных танкеров и контейнеровозов, которые бесследно пропали в море за последние двадцать лет. 

Казалось бы, при такой серьезной концентрации сил, средств и современных технологий большинство тайн волн-убийц должно быть уже разгадано, однако…

Какая вода в океане

Воды океана по сравнению с сушей быстрее нагреваются, потому
что поглощение тепла происходит быстрее. Участвуя в тепловой регуляции планеты,
поверхность мирового океана отдает накопленное тепло в холодное время года.

Ответить на вопрос, какая вода в мировом океане более
холодная придонная или поверхностная, просто. Солнечное тепло прогревает
поверхность на несколько метров в глубину, температура этого слоя достигает
28°С, тогда как ниже одного километра может быть не более 5°С. Согласно
физическим свойствам, которые определяют, какая вода в океане легче, теплая или
холодная, конечно, теплая, поэтому она остается на поверхности и не опускается
на дно. Поскольку ответ на вопрос, какая вода в океане легче, теплая или
холодная, предполагает, что холодные воды остаются внизу, ученые утверждают, каковы
особенности слоев воды находящихся у дна океана, следующие: они легче сохраняют
углерод, а температуры воды даже в районе тропических зон не превышает 3°С.

Северную часть индийского океана называют океаном прогретых
вод из-за теплого экваториального течения, благодаря которому здесь прекрасно
себя чувствуют многочисленные виды кораллов, рыб и морских обитателей. А вот с
приближением к Южному полярному кругу воды становятся холоднее, в этих местах
можно встретить гигантские айсберги, отколовшиеся от Антарктического ледяного
щита.

Обзор всех указанных выше причин течений

Указанные выше причины, возбуждающие передвижение воды в океане, сводятся к трем условиям: влиянию разностей давления атмосферы, влиянию разностей плотности морской воды и влиянию ветра. Влияние вращения Земли на оси и влияние берегов могут только видоизменять характер уже существующих течений, но сами по себе два последние обстоятельства никаких движений воды возбудить не могут.

Влияние разностей давления атмосферы никаких значительных течений возбудить не может. Остаются две следующие причины: разности плотностей морской воды и ветер.

Разности плотностей в океане всегда существуют, а следовательно, всегда стремятся привести частицы воды в движение. При этом разности плотностей действуют не только в горизонтальном направлении, но и в вертикальном, возбуждая конвекционные течения.

Ветер, согласно современным взглядам, не только обуславливает возникновение поверхностных течений, но также служит причиной происхождения течений и на разных глубинах до самого дна. Таким образом, значение ветра, как возбудителя течений, в последнее время расширилось и стало более всеобщим.

Материал, которым располагает океанография, по распределению плотностей в разных местах и на разных глубинах в океанах еще очень мал и недостаточно точен; но на основании его уже можно сделать попытку определить численно (по способу Бьеркнеса) те скорости течений, какие разность плотностей может возбудить в поверхностных слоях океанов.

На основании меридионального разреза через Северное Экваториальное течение Атлантического океана было определено, что существующая между 10 и 20° с. ш. разность плотностей могла бы произвести течение со скоростью 5—6 морских миль в 24 часа. Между тем наблюдаемая в этом месте средняя суточная скорость Экваториального течения около 15—17 морских миль. Если вычислить скорость того же Экваториального течения, соответствующую только влиянию ветра (принимая скорость NE пассата в 6,5 м в секунду), то получится суточная скорость течения в 11 морских миль. Сложив эту величину с 5—6 морскими милями суточной скорости, обусловленной разностью плотности, получим наблюдаемые 16—17 морских миль в сутки.

Приведенный пример показывает, что ветер, по-видимому, оказывается более важной причиной возбуждения течений на «поверхности океана, нежели разность плотностей. Подобный же пример для Балтийского моря еще более убедителен, он показывает, что даже и там, где на малых расстояниях разности плотностей очень велики, все-таки влияние ветра имеет большее значение для возникновения течений (см

стр. 273, течения Балтийского моря)

Подобный же пример для Балтийского моря еще более убедителен, он показывает, что даже и там, где на малых расстояниях разности плотностей очень велики, все-таки влияние ветра имеет большее значение для возникновения течений (см. стр. 273, течения Балтийского моря).

Наконец, самое существование смены муссонных течений, а также некоторое передвижение и изменение течений тропической полосы во всех океанах в зиму и лето того же полушария показывают еще раз большое значение ветров для существующей системы течений. Перемещение метеорологического экватора с временами года, конечно, сказывается на распределении температуры воды (см. главу о температуре), а следовательно, и на распределении плотности воды, но эти изменения очень невелики; изменения же в системе ветров, вызываемых перемещением метеорологического экватора, очень значительны.

Таким образом, из этих трех причин течений надо признать, что ветер представляет одну из важнейших. На это указывают многие обстоятельства; несомненно, что если бы ветер не существовал, то возникшие в океанах системы течений очень значительно отличались бы от существующих.

Тут будет уместно указать, что в океане существует много течений с водами совершенно различных плотностей, идущих рядом, и, несмотря на то, между ними, однако, вовсе не образуется обмена воды.

Наконец, все течения идут по ложу, образованному водами океана, всегда обладающими совершенно иными физическими свойствами, нежели воды самих течений; однако и при этих условиях течения продолжают существовать и двигаться, не смешивая немедленно своих вод с соседними. Конечно, такое смешение вод их происходит, но оно совершается очень медленно и в значительной мере обуславливается образованием водоворотов при движении одного слоя воды по другому.

Температура вод мирового океана

Поскольку Мировой океан занимает в три раза большую площадь, чем суша, то и тепла он получает втрое больше. Выше были описаны закономерности прогрева воды, которые определяют её температуру. А дальше будут рассмотрены особенности каждого из океанов по отдельности.

Наибольшая температура у поверхности воды наблюдается в Тихом океане – 19,4 градуса тепла по Цельсию (хотя самым тёплым и принято считать Индийским, он здесь всего лишь на втором месте – соответственно, 17,3 градуса). Третье место занимает Атлантический океан – его средняя температура у поверхности составляет 16,5 градусов. Завершает рейтинг Северный Ледовитый океан – там температура едва ли поднимается выше 1 градуса.

Так как океан на 25-50 % теплее суши, такая разница не может не оказывать существенного влияния не только на гидробионтов – так называют обитающие в водной среде живые организмы – но и на всё живое на Земле в целом. Являясь подобием центрального котла отопления, океан защищает всех живых существ как от перегрева, так и от переохлаждения.

Воздействие на климат и экологию

Океанские течения важны при изучении морского мусора , и наоборот. Эти токи также влияют на температуру во всем мире. Например, океаническое течение, которое приносит теплые воды через северную Атлантику в северо-западную Европу, также кумулятивно и медленно блокирует образование льда вдоль берегов моря, что также блокирует вход и выход судов во внутренние водные пути и морские порты, следовательно, океанские течения играют решающую роль. во влиянии на климат регионов, через которые они протекают. Холодные океанические водные течения, текущие из полярных и субполярных регионов, приносят много планктона, который имеет решающее значение для дальнейшего выживания нескольких ключевых видов морских существ в морских экосистемах . Поскольку планктон является пищей рыб, многочисленные популяции рыб часто живут там, где преобладают эти течения.

Океанские течения также очень важны для распространения многих форм жизни. Примером может служить жизненный цикл европейского угря .

Что такое Мировой океан

Очень часто Землю называют Голубой планетой. Это неспроста, ведь суша занимает всего около четверти поверхности планеты, а более трёх четвертей её покрывает Мировой океан.

Мировой океан – это основная часть гидросферы, водной оболочки Земли. Учёные в свою очередь разделяют его на четыре крупные составляющие, океаны: Тихий, Индийский, Атлантический и Северный Ледовитый. Мировой океан, как принято считать, един, хотя и сильно расчленён.

Что же известно о Мировом океане сегодня?

Как отмечалось ранее, основная часть гидросферы планеты Земля представлена водами Мирового океана. В Северном полушарии он занимает три пятых всей поверхности планеты, в Южном же – четыре пятых.

Мировой океан – термин совокупный. Следует понимать, что на глобусе или карте невозможно найти гидроним с таким называнием. А вот четыре его составляющих – это земные океаны – отыскать проще простого. Они, правда, тоже не являются неделимыми частями водной оболочки планеты: они делятся на заливы, проливы и моря – это крупнейшие регионы океанов.

Как же возникают бродячие волны?

Одна из основных версий — столкновение поверхностных потоков постоянных морских течений со встречным ветровым волнением. Подобное явление обычно наблюдается там, где встречаются океаны — у мысов Горн и Доброй Надежды. Неслучайно блуждающие волны часто называют еще и кейпроллерами (от английского caperoller — огибающие мыс). Районы встречи холодных и теплых течений также попадают в зону риска, так что вероятность встречи с волной-убийцей представляется достаточно высокой у полуострова Лабрадор, на подходах к Гвинейскому заливу, к востоку от Японии и у юго-восточного побережья Австралии. 

Но как в этом случае объяснить появление блуждающих водяных гор на относительно закрытых акваториях — например, в Мексиканском заливе, в Северном и Средиземном морях или на Великих озерах?

Приверженцы классической волновой теории предпочитают объяснять этот феномен с помощью механизма интерференции. Суть его состоит в наложении волн, при котором из нескольких сравнительно небольших образуется одна гигантская. Скептики же отмечают, что в таком случае волны-убийцы должны встречаться гораздо реже, чем это происходит на практике и документально подтверждается спутниковыми снимками. Одного лишь линейного сложения размеров и амплитуд для этого недостаточно, а значит речь может идти о своеобразном «энергетическом вампиризме». Сторонники этой версии утверждают, что при определенных внешних условиях морские волны приобретают способность обмениваться кинетической энергией. 

«Волна-вампир» постепенно высасывает энергию из своих соседок, что может привести к резкому (и неожиданному для стороннего наблюдателя) увеличению ее размеров. 

После достижения критической высоты «вампир» мгновенно сбрасывает накопленную энергию, чем и объясняются сразу две особенности блуждающей волны — сила удара и краткий срок ее видимого для человеческого глаза существования.

Еще одна группа исследователей пытается совместить изучение линейных и нелинейных свойств волн с углубленным анализом особенностей окружающей среды. При этом они выделяют следующие необходимые условия, которые с высокой степенью вероятности приводят к формированию бродячей волны:

  • Наличие близкой области пониженного давления.
  • Резкие изменения направления и скорости ветра.
  • Движение волн в пересекающихся направлениях (толчея).
  • Топографические особенности берега или подводного рельефа, способствующие изменению направления волн.
  • Наличие последовательного ряда из десяти так называемых эффективных волн, высота которых на 20–30% выше средней по району.
  • Особая форма гребней волн и ее изменение.

Заметим, что при внимательном рассмотрении все перечисленные «открытия» оказываются обычными факторами риска в штормовом (или предштормовом) море. В большинстве своем они давно известны яхтенным капитанам, но, к сожалению, не добавляют понимания природы бродячей волны.

2.


Энергия волн хорошо передается только в том направлении, в каком частицы могут свободно перемещаться. На поверхности это делать проще, чем на глубине. Все потому, что воздух не создает никаких ограничений, в то время как на глубине частицы воды находятся в весьма стесненных условиях. Причина — плохая сжимаемость. Из-за нее волны могут перемещаться на большие расстояния по поверхности, но очень быстро затухают вглубь.

Важно, что во время волны частицы жидкости почти не двигаются. На большой глубине траектория их движения имеет форму окружности, на малой — вытянутого горизонтального эллипса

Благодаря этому корабли в гавани, птицы или кусочки дерева качаются на волнах, фактически не перемещаясь по поверхности.

Обрушение волн

Двигаясь к берегу, при этом натыкаясь на отмели, рифы, острова, волны постепенно растрачивают былую мощь.

Чем дольше расстояние от центра шторма, тем они слабее.

При встрече с мелководьем катящимся водным массам некуда деваться, они движутся наверх.

Период волн уменьшается, они словно сжимаются, замедляются, становятся короче и круче. Так вырастает волна для серфинга.

Наконец, гребни опрокидываются, происходит разрушение или ломка волн. Чем больше перепад глубин, тем круче и выше будет волна!

Она возникает возле рифов, скал, затонувших кораблей, на крутой песчаной отмели.

Рост гребня начинается при глубине, равной половине высоты волны.

Причины образования течений в мировом океане

Широкие движения воды, составляющей мировой океан, перемещаются в горизонтальном направлении. Процесс перемещения носит название течения.

Факторы, приводящие к возникновению течений, подразделяются на внешние и внутренние. Первая группа представлена в виде списка:

  • влияние ветра;

  • приливы;

  • неоднородность рельефа;

  • разница атмосферного давления.

Схема направления основных течений мирового океана показана на рисунке ниже.

Ключевой фактор перемещения воды – ветер. Влияние последнего обусловливает формирование мелких потоков – неровностей на поверхности воды. Это приводит к образованию энергии между ветром и водными массами, способствующей появлению волновых движений. Напряжение распространяется сверху вниз (с поверхностных слоев на глубинные). В основе процесса лежит явление турбулентной вязкости жидкости, что способствует становлению дрейфового течения. 

Ветер действует как на поверхностные слои, так и на береговые составляющие океана. Отклонение воды от берега осуществляется под наклоном. Так образуются течения по градиенту (градиентные).

Приливы зависят от вращения Луны и Солнца. Планета совершает полный оборот в течение суток, этим объясняется периодичность приливов. 

Силы притяжения связаны с суточными изменениями. Ряд исследователей рассматривают приливы, как источник турбулентного (с завихрениями, хаотичного, без четкой направленности) потока воды.

Атмосферные изменения влекут за собой деформации поверхностного рельефа (слоя воды) мирового океана, формируя течения. Последние также зависят от температурных характеристик, плотности воды, которые варьируют на разной глубине.

В таблице представлены известные течения.

Течение

Представитель

Самое сильное теплое течение

Гольфстрим

Самые крупные

Течение Западных ветров проходит вокруг Антарктиды через все бассейны.

Гольфстрим, Куросио, Эль-Ниньо.

Северное и Южное пассатное.

Самое мощное

Антарктическое циркумполярное течение или течение Западных ветров (в три раза превышает Гольфстрим).

Самое большое течение Северного Ледовитого океана

Восточно-Гренландское

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector